Derousseau's Generalization of the Malfatti circles

The Smallest Pythagorean Triangle

\(C=90\degree\).   \(a:b:c=3:4:5\).


[Other solutions]
[Guy]
[Lob & Richmond]
(0**)
(1**)
(2**)
(3**)

\(\mathbf{0a}\) \((011)\)

Exactly,
\[\begin{aligned}\overrightarrow{AA^\prime}&={}\frac{2\sqrt{10}+\sqrt{5}+2\sqrt{2}+5}{12}\overrightarrow{AI_A},&\overrightarrow{BB^\prime}&={}\frac{2\sqrt{10}+\sqrt{5}-2\sqrt{2}-5}{2}\overrightarrow{BI_A},&\overrightarrow{CC^\prime}&={}\frac{2\sqrt{10}-\sqrt{5}+2\sqrt{2}-5}{4}\overrightarrow{CI_A}.\end{aligned}\]
\[\begin{alignedat}{4}A^\prime&={}&-\frac{2\sqrt{10}+\sqrt{5}+2\sqrt{2}-3}{8}&{}:{}&\frac{2\sqrt{10}+\sqrt{5}+2\sqrt{2}+5}{18}&{}:{}&\frac{5\left(2\sqrt{10}+\sqrt{5}+2\sqrt{2}+5\right)}{72}&,\\B^\prime&={}&-\frac{2\sqrt{10}+\sqrt{5}-2\sqrt{2}-5}{4}&{}:{}&-\frac{2\sqrt{10}+\sqrt{5}-2\sqrt{2}-11}{6}&{}:{}&\frac{5\left(2\sqrt{10}+\sqrt{5}-2\sqrt{2}-5\right)}{12}&,\\C^\prime&={}&-\frac{2\sqrt{10}-\sqrt{5}+2\sqrt{2}-5}{8}&{}:{}&\frac{2\sqrt{10}-\sqrt{5}+2\sqrt{2}-5}{6}&{}:{}&-\frac{2\sqrt{10}-\sqrt{5}+2\sqrt{2}-29}{24}&.\end{alignedat}\]
Approximately,
\[\begin{aligned}\overrightarrow{AA^\prime}&\approx{}1.365754201882\overrightarrow{AI_A},\\\overrightarrow{BB^\prime}&\approx{}0.366098086545\overrightarrow{BI_A},\\\overrightarrow{CC^\prime}&\approx{}0.479228616896\overrightarrow{CI_A}.\end{aligned}\]
\[\begin{alignedat}{4}A^\prime&\approx{}&-1.048631302823&{}:{}&0.910502801255&{}:{}&1.138128501568&,\\B^\prime&\approx{}&-0.183049043273&{}:{}&0.877967304485&{}:{}&0.305081738788&,\\C^\prime&\approx{}&-0.239614308448&{}:{}&0.319485744597&{}:{}&0.920128563851&.\end{alignedat}\]
0a (011)

Hiroyasu Kamo