Derousseau's Generalization of the Malfatti circles

The Smallest Pythagorean Triangle

\(C=90\degree\).   \(a:b:c=3:4:5\).


[Other solutions]
[Guy]
[Lob & Richmond]
(0**)
(1**)
(2**)
(3**)

\(\mathbf{0b}\) \((101)\)

Exactly,
\[\begin{aligned}\overrightarrow{AA^\prime}&={}\frac{\sqrt{10}+3\sqrt{5}-3\sqrt{2}-5}{2}\overrightarrow{AI_B},&\overrightarrow{BB^\prime}&={}\frac{\sqrt{10}+3\sqrt{5}+3\sqrt{2}+5}{12}\overrightarrow{BI_B},&\overrightarrow{CC^\prime}&={}-\frac{\sqrt{10}-3\sqrt{5}-3\sqrt{2}+5}{6}\overrightarrow{CI_B}.\end{aligned}\]
\[\begin{alignedat}{4}A^\prime&={}&-\frac{\sqrt{10}+3\sqrt{5}-3\sqrt{2}-13}{8}&{}:{}&-\frac{\sqrt{10}+3\sqrt{5}-3\sqrt{2}-5}{2}&{}:{}&\frac{5\left(\sqrt{10}+3\sqrt{5}-3\sqrt{2}-5\right)}{8}&,\\B^\prime&={}&\frac{\sqrt{10}+3\sqrt{5}+3\sqrt{2}+5}{16}&{}:{}&-\frac{\sqrt{10}+3\sqrt{5}+3\sqrt{2}-1}{6}&{}:{}&\frac{5\left(\sqrt{10}+3\sqrt{5}+3\sqrt{2}+5\right)}{48}&,\\C^\prime&={}&-\frac{\sqrt{10}-3\sqrt{5}-3\sqrt{2}+5}{8}&{}:{}&\frac{\sqrt{10}-3\sqrt{5}-3\sqrt{2}+5}{6}&{}:{}&-\frac{\sqrt{10}-3\sqrt{5}-3\sqrt{2}-19}{24}&.\end{alignedat}\]
Approximately,
\[\begin{aligned}\overrightarrow{AA^\prime}&\approx{}0.313920452774\overrightarrow{AI_B},\\\overrightarrow{BB^\prime}&\approx{}1.592760189982\overrightarrow{BI_B},\\\overrightarrow{CC^\prime}&\approx{}0.464761159908\overrightarrow{CI_B}.\end{aligned}\]
\[\begin{alignedat}{4}A^\prime&\approx{}&0.921519886806&{}:{}&-0.313920452774&{}:{}&0.392400565968&,\\B^\prime&\approx{}&1.194570142487&{}:{}&-2.185520379965&{}:{}&1.990950237478&,\\C^\prime&\approx{}&0.348570869931&{}:{}&-0.464761159908&{}:{}&1.116190289977&.\end{alignedat}\]
0b (101)

Hiroyasu Kamo