Derousseau's Generalization of the Malfatti circles

The Smallest Eisenstein Triangle

\(C=120\degree\).   \(a:b:c=3:5:7\).


[Other solutions]
[Guy]
[Lob & Richmond]
(0**)
(1**)
(2**)
(3**)

\(\mathbf{0b}\) \((101)\)

Exactly,
\[\begin{aligned}\overrightarrow{AA^\prime}&={}\frac{8\sqrt{7}-9\sqrt{3}-5}{2}\overrightarrow{AI_B},&\overrightarrow{BB^\prime}&={}\frac{8\sqrt{7}+9\sqrt{3}+5}{30}\overrightarrow{BI_B},&\overrightarrow{CC^\prime}&={}\frac{4\sqrt{7}+3\sqrt{3}-5}{18}\overrightarrow{CI_B}.\end{aligned}\]
\[\begin{alignedat}{4}A^\prime&={}&-\frac{8\sqrt{7}-9\sqrt{3}-10}{5}&{}:{}&-\frac{8\sqrt{7}-9\sqrt{3}-5}{2}&{}:{}&\frac{7\left(8\sqrt{7}-9\sqrt{3}-5\right)}{10}&,\\B^\prime&={}&\frac{8\sqrt{7}+9\sqrt{3}+5}{50}&{}:{}&-\frac{8\sqrt{7}+9\sqrt{3}-10}{15}&{}:{}&\frac{7\left(8\sqrt{7}+9\sqrt{3}+5\right)}{150}&,\\C^\prime&={}&\frac{4\sqrt{7}+3\sqrt{3}-5}{30}&{}:{}&-\frac{4\sqrt{7}+3\sqrt{3}-5}{18}&{}:{}&\frac{4\sqrt{7}+3\sqrt{3}+40}{45}&.\end{alignedat}\]
Approximately,
\[\begin{aligned}\overrightarrow{AA^\prime}&\approx{}0.288776610198\overrightarrow{AI_B},\\\overrightarrow{BB^\prime}&\approx{}1.391815591888\overrightarrow{BI_B},\\\overrightarrow{CC^\prime}&\approx{}0.598842092609\overrightarrow{CI_B}.\end{aligned}\]
\[\begin{alignedat}{4}A^\prime&\approx{}&0.884489355921&{}:{}&-0.288776610198&{}:{}&0.404287254278&,\\B^\prime&\approx{}&0.835089355133&{}:{}&-1.783631183776&{}:{}&1.948541828643&,\\C^\prime&\approx{}&0.359305255565&{}:{}&-0.598842092609&{}:{}&1.239536837044&.\end{alignedat}\]
0b (101)

Hiroyasu Kamo