Derousseau's Generalization of the Malfatti circles

The Smallest Eisenstein Triangle

\(C=120\degree\).   \(a:b:c=3:5:7\).


[Other solutions]
[Guy]
[Lob & Richmond]
(0**)
(1**)
(2**)
(3**)

\(\mathbf{3a}\) \((033)\)

Exactly,
\[\begin{aligned}\overrightarrow{AA^\prime}&={}\frac{8\sqrt{21}-5\sqrt{3}+27}{90}\overrightarrow{AI_A},&\overrightarrow{BB^\prime}&={}\frac{8\sqrt{21}+5\sqrt{3}-27}{6}\overrightarrow{BI_A},&\overrightarrow{CC^\prime}&={}\frac{4\sqrt{21}-5\sqrt{3}-9}{10}\overrightarrow{CI_A}.\end{aligned}\]
\[\begin{alignedat}{4}A^\prime&={}&-\frac{16\sqrt{21}-10\sqrt{3}-81}{135}&{}:{}&\frac{8\sqrt{21}-5\sqrt{3}+27}{162}&{}:{}&\frac{7\left(8\sqrt{21}-5\sqrt{3}+27\right)}{810}&,\\B^\prime&={}&-\frac{8\sqrt{21}+5\sqrt{3}-27}{18}&{}:{}&-\frac{16\sqrt{21}+10\sqrt{3}-81}{27}&{}:{}&\frac{7\left(8\sqrt{21}+5\sqrt{3}-27\right)}{54}&,\\C^\prime&={}&-\frac{4\sqrt{21}-5\sqrt{3}-9}{30}&{}:{}&\frac{4\sqrt{21}-5\sqrt{3}-9}{18}&{}:{}&-\frac{4\sqrt{21}-5\sqrt{3}-54}{45}&.\end{alignedat}\]
Approximately,
\[\begin{aligned}\overrightarrow{AA^\prime}&\approx{}0.611115016909\overrightarrow{AI_A},\\\overrightarrow{BB^\prime}&\approx{}3.053476599582\overrightarrow{BI_A},\\\overrightarrow{CC^\prime}&\approx{}0.067004874198\overrightarrow{CI_A}.\end{aligned}\]
\[\begin{alignedat}{4}A^\prime&\approx{}&0.185179977455&{}:{}&0.339508342727&{}:{}&0.475311679818&,\\B^\prime&\approx{}&-1.017825533194&{}:{}&-0.357100710925&{}:{}&2.374926244119&,\\C^\prime&\approx{}&-0.022334958066&{}:{}&0.037224930110&{}:{}&0.985110027956&.\end{alignedat}\]
3a (033)

Hiroyasu Kamo