Derousseau's Generalization of the Malfatti circles

The Smallest Eisenstein Triangle

\(C=120\degree\).   \(a:b:c=3:5:7\).


[Other solutions]
[Guy]
[Lob & Richmond]
(0**)
(1**)
(2**)
(3**)

\(\mathbf{3c}\) \((132)\)

Exactly,
\[\begin{aligned}\overrightarrow{AA^\prime}&={}\frac{6\sqrt{21}+10\sqrt{7}-15\sqrt{3}-31}{10}\overrightarrow{AI_C},&\overrightarrow{BB^\prime}&={}-\frac{6\sqrt{21}+10\sqrt{7}+15\sqrt{3}+31}{18}\overrightarrow{BI_C},&\overrightarrow{CC^\prime}&={}-\frac{6\sqrt{21}-10\sqrt{7}-15\sqrt{3}+29}{30}\overrightarrow{CI_C}.\end{aligned}\]
\[\begin{alignedat}{4}A^\prime&={}&\frac{6\sqrt{21}+10\sqrt{7}-15\sqrt{3}-26}{5}&{}:{}&\frac{6\sqrt{21}+10\sqrt{7}-15\sqrt{3}-31}{2}&{}:{}&-\frac{7\left(6\sqrt{21}+10\sqrt{7}-15\sqrt{3}-31\right)}{10}&,\\B^\prime&={}&-\frac{6\sqrt{21}+10\sqrt{7}+15\sqrt{3}+31}{6}&{}:{}&-\frac{12\sqrt{21}+20\sqrt{7}+30\sqrt{3}+53}{9}&{}:{}&\frac{7\left(6\sqrt{21}+10\sqrt{7}+15\sqrt{3}+31\right)}{18}&,\\C^\prime&={}&-\frac{6\sqrt{21}-10\sqrt{7}-15\sqrt{3}+29}{10}&{}:{}&-\frac{6\sqrt{21}-10\sqrt{7}-15\sqrt{3}+29}{6}&{}:{}&\frac{24\sqrt{21}-40\sqrt{7}-60\sqrt{3}+131}{15}&.\end{alignedat}\]
Approximately,
\[\begin{aligned}\overrightarrow{AA^\prime}&\approx{}-0.302779483315\overrightarrow{AI_C},\\\overrightarrow{BB^\prime}&\approx{}-6.162984966329\overrightarrow{BI_C},\\\overrightarrow{CC^\prime}&\approx{}-0.135239298185\overrightarrow{CI_C}.\end{aligned}\]
\[\begin{alignedat}{4}A^\prime&\approx{}&0.394441033370&{}:{}&-1.513897416576&{}:{}&2.119456383207&,\\B^\prime&\approx{}&-18.488954898986&{}:{}&-23.651939865314&{}:{}&43.140894764300&,\\C^\prime&\approx{}&-0.405717894556&{}:{}&-0.676196490926&{}:{}&2.081914385482&.\end{alignedat}\]
3c (132)

Hiroyasu Kamo