Derousseau's Generalization of the Malfatti circles

The Smallest Eisenstein Triangle

\(C=120\degree\).   \(a:b:c=3:5:7\).


[Other solutions]
[Guy]
[Lob & Richmond]
(0**)
(1**)
(2**)
(3**)

\(\mathbf{4a}\) \((211)\)

Exactly,
\[\begin{aligned}\overrightarrow{AA^\prime}&={}-\frac{4\sqrt{21}+5\sqrt{3}-9}{30}\overrightarrow{AI_A},&\overrightarrow{BB^\prime}&={}-\frac{4\sqrt{21}-5\sqrt{3}+9}{2}\overrightarrow{BI_A},&\overrightarrow{CC^\prime}&={}-\frac{8\sqrt{21}+5\sqrt{3}+27}{30}\overrightarrow{CI_A}.\end{aligned}\]
\[\begin{alignedat}{4}A^\prime&={}&\frac{8\sqrt{21}+10\sqrt{3}+27}{45}&{}:{}&-\frac{4\sqrt{21}+5\sqrt{3}-9}{54}&{}:{}&-\frac{7\left(4\sqrt{21}+5\sqrt{3}-9\right)}{270}&,\\B^\prime&={}&\frac{4\sqrt{21}-5\sqrt{3}+9}{6}&{}:{}&\frac{8\sqrt{21}-10\sqrt{3}+27}{9}&{}:{}&-\frac{7\left(4\sqrt{21}-5\sqrt{3}+9\right)}{18}&,\\C^\prime&={}&\frac{8\sqrt{21}+5\sqrt{3}+27}{90}&{}:{}&-\frac{8\sqrt{21}+5\sqrt{3}+27}{54}&{}:{}&\frac{8\sqrt{21}+5\sqrt{3}+162}{135}&.\end{alignedat}\]
Approximately,
\[\begin{aligned}\overrightarrow{AA^\prime}&\approx{}-0.599685227256\overrightarrow{AI_A},\\\overrightarrow{BB^\prime}&\approx{}-9.335024370989\overrightarrow{BI_A},\\\overrightarrow{CC^\prime}&\approx{}-2.410695319916\overrightarrow{CI_A}.\end{aligned}\]
\[\begin{alignedat}{4}A^\prime&\approx{}&1.799580303007&{}:{}&-0.333158459586&{}:{}&-0.466421843421&,\\B^\prime&\approx{}&3.111674790330&{}:{}&5.148899720440&{}:{}&-7.260574510770&,\\C^\prime&\approx{}&0.803565106639&{}:{}&-1.339275177731&{}:{}&1.535710071093&.\end{alignedat}\]
4a (211)

Hiroyasu Kamo