Derousseau's Generalization of the Malfatti circles

The Smallest Eisenstein Triangle

\(C=120\degree\).   \(a:b:c=3:5:7\).


[Other solutions]
[Guy]
[Lob & Richmond]
(0**)
(1**)
(2**)
(3**)

\(\mathbf{7a}\) \((233)\)

Exactly,
\[\begin{aligned}\overrightarrow{AA^\prime}&={}-\frac{8\sqrt{21}-5\sqrt{3}-27}{90}\overrightarrow{AI_A},&\overrightarrow{BB^\prime}&={}-\frac{8\sqrt{21}+5\sqrt{3}+27}{6}\overrightarrow{BI_A},&\overrightarrow{CC^\prime}&={}-\frac{4\sqrt{21}-5\sqrt{3}+9}{10}\overrightarrow{CI_A}.\end{aligned}\]
\[\begin{alignedat}{4}A^\prime&={}&\frac{16\sqrt{21}-10\sqrt{3}+81}{135}&{}:{}&-\frac{8\sqrt{21}-5\sqrt{3}-27}{162}&{}:{}&-\frac{7\left(8\sqrt{21}-5\sqrt{3}-27\right)}{810}&,\\B^\prime&={}&\frac{8\sqrt{21}+5\sqrt{3}+27}{18}&{}:{}&\frac{16\sqrt{21}+10\sqrt{3}+81}{27}&{}:{}&-\frac{7\left(8\sqrt{21}+5\sqrt{3}+27\right)}{54}&,\\C^\prime&={}&\frac{4\sqrt{21}-5\sqrt{3}+9}{30}&{}:{}&-\frac{4\sqrt{21}-5\sqrt{3}+9}{18}&{}:{}&\frac{4\sqrt{21}-5\sqrt{3}+54}{45}&.\end{alignedat}\]
Approximately,
\[\begin{aligned}\overrightarrow{AA^\prime}&\approx{}-0.011115016909\overrightarrow{AI_A},\\\overrightarrow{BB^\prime}&\approx{}-12.053476599582\overrightarrow{BI_A},\\\overrightarrow{CC^\prime}&\approx{}-1.867004874198\overrightarrow{CI_A}.\end{aligned}\]
\[\begin{alignedat}{4}A^\prime&\approx{}&1.014820022545&{}:{}&-0.006175009394&{}:{}&-0.008645013151&,\\B^\prime&\approx{}&4.017825533194&{}:{}&6.357100710925&{}:{}&-9.374926244119&,\\C^\prime&\approx{}&0.622334958066&{}:{}&-1.037224930110&{}:{}&1.414889972044&.\end{alignedat}\]
7a (233)

Hiroyasu Kamo