Derousseau's Generalization of the Malfatti circles

\(a:b:c=5:12:13\).


[Other solutions]
[Guy]
[Lob & Richmond]
(0**)
(1**)
(2**)
(3**)

\(\mathbf{6c}\) \((330)\)

Exactly,
\[\begin{aligned}\overrightarrow{AA^\prime}&={}-\frac{3\sqrt{26}-5\sqrt{13}-15\sqrt{2}+17}{6}\overrightarrow{AI_C},&\overrightarrow{BB^\prime}&={}\frac{3\sqrt{26}-5\sqrt{13}+15\sqrt{2}-17}{20}\overrightarrow{BI_C},&\overrightarrow{CC^\prime}&={}-\frac{3\sqrt{26}+5\sqrt{13}-15\sqrt{2}-17}{30}\overrightarrow{CI_C}.\end{aligned}\]
\[\begin{alignedat}{4}A^\prime&={}&-\frac{3\sqrt{26}-5\sqrt{13}-15\sqrt{2}-7}{24}&{}:{}&-\frac{3\sqrt{26}-5\sqrt{13}-15\sqrt{2}+17}{2}&{}:{}&\frac{13\left(3\sqrt{26}-5\sqrt{13}-15\sqrt{2}+17\right)}{24}&,\\B^\prime&={}&\frac{3\sqrt{26}-5\sqrt{13}+15\sqrt{2}-17}{16}&{}:{}&\frac{3\sqrt{26}-5\sqrt{13}+15\sqrt{2}-7}{10}&{}:{}&-\frac{13\left(3\sqrt{26}-5\sqrt{13}+15\sqrt{2}-17\right)}{80}&,\\C^\prime&={}&-\frac{3\sqrt{26}+5\sqrt{13}-15\sqrt{2}-17}{24}&{}:{}&-\frac{3\sqrt{26}+5\sqrt{13}-15\sqrt{2}-17}{10}&{}:{}&\frac{51\sqrt{26}+85\sqrt{13}-255\sqrt{2}-169}{120}&.\end{alignedat}\]
Approximately,
\[\begin{aligned}\overrightarrow{AA^\prime}&\approx{}1.157316878690\overrightarrow{AI_C},\\\overrightarrow{BB^\prime}&\approx{}0.074125279953\overrightarrow{BI_C},\\\overrightarrow{CC^\prime}&\approx{}0.162946283917\overrightarrow{CI_C}.\end{aligned}\]
\[\begin{alignedat}{4}A^\prime&\approx{}&1.289329219672&{}:{}&3.471950636069&{}:{}&-3.761279855741&,\\B^\prime&\approx{}&0.092656599941&{}:{}&1.148250559905&{}:{}&-0.240907159846&,\\C^\prime&\approx{}&0.203682854896&{}:{}&0.488838851750&{}:{}&0.307478293354&.\end{alignedat}\]
6c (330)

Hiroyasu Kamo