Derousseau's Generalization of the Malfatti circles

Angle Bisectors


Jump
[Guy]
[Lob & Richmond]
(0**)
(1**)
(2**)
(3**)

\(\mathbf{0b}\)   \((101)\)

\[\begin{aligned}\overrightarrow{AA^{\prime}} &= \dfrac{\cos\dfrac{A}{4}\cos\dfrac{B}{4}\cos\dfrac{\pi-{C}}{4}}{\sqrt{2}\cos\dfrac{\pi-{A}}{4}\sin\dfrac{\pi-{B}}{4}\cos\dfrac{C}{4}}\overrightarrow{A{I_B}}\\\overrightarrow{BB^{\prime}} &= \dfrac{\cos\dfrac{\pi-{A}}{4}\sin\dfrac{\pi-{B}}{4}\cos\dfrac{\pi-{C}}{4}}{\sqrt{2}\cos\dfrac{A}{4}\cos\dfrac{B}{4}\cos\dfrac{C}{4}}\overrightarrow{B{I_B}}\\\overrightarrow{CC^{\prime}} &= \dfrac{\cos\dfrac{\pi-{A}}{4}\cos\dfrac{B}{4}\cos\dfrac{C}{4}}{\sqrt{2}\cos\dfrac{A}{4}\sin\dfrac{\pi-{B}}{4}\cos\dfrac{\pi-{C}}{4}}\overrightarrow{C{I_B}}\end{aligned}\]

Hiroyasu Kamo