Derousseau's Generalization of the Malfatti circles

\(A=36\degree\), \(B=36\degree\), \(C=108\degree\).

*
[Other solutions]
[Guy]
[Lob & Richmond]

\(\mathbf{2}\) \((020)\)

Triangle connecting the centers of the Malfatti circles

Approximately,
\[ \begin{alignedat}{4} A^\prime&{}\approx{}&-0.542110752268&{}:{}&0.589033892950&{}:{}&0.953076859319&,\\B^\prime&{}\approx{}&0.007799870546&{}:{}&0.979579673804&{}:{}&0.012620455651&,\\C^\prime&{}\approx{}&1.734342398551&{}:{}&1.734342398551&{}:{}&-2.468684797102&. \end{alignedat} \]
2 (020)

Angle bisectors

Approximately,
\[ \begin{aligned} \overrightarrow{AA^\prime}&\approx{}2.131144645218\overrightarrow{AI},\\\overrightarrow{BB^\prime}&\approx{}0.028220196742\overrightarrow{BI},\\\overrightarrow{CC^\prime}&\approx{}6.274909746087\overrightarrow{CI}. \end{aligned} \] \[ \begin{alignedat}{4} I&{}\approx{}&0.276393202250&{}:{}&0.276393202250&{}:{}&0.447213595500&. \end{alignedat} \]
2 (020)

Radical circle of the Malfatti circles

Approximately,
\[ \begin{alignedat}{4} I^\prime&{}\approx{}&0.023336305710&{}:{}&0.930265846940&{}:{}&0.046397847350&. \end{alignedat} \]
2 (020)

Hiroyasu Kamo