Derousseau's Generalization of the Malfatti circles

\(A=36\degree\), \(B=36\degree\), \(C=108\degree\).

*
[Other solutions]
[Guy]
[Lob & Richmond]

\(\mathbf{2b}\) \((121)\)

Triangle connecting the centers of the Malfatti circles

Approximately,
\[ \begin{alignedat}{4} A^\prime&{}\approx{}&2.741378763423&{}:{}&2.817610026505&{}:{}&-4.558988789928&,\\B^\prime&{}\approx{}&-0.563522005301&{}:{}&2.475319763287&{}:{}&-0.911797757986&,\\C^\prime&{}\approx{}&-0.956943567841&{}:{}&0.956943567841&{}:{}&1.000000000000&. \end{alignedat} \]
2b (121)

Angle bisectors

Approximately,
\[ \begin{aligned} \overrightarrow{AA^\prime}&\approx{}-4.558988789928\overrightarrow{AI_B},\\\overrightarrow{BB^\prime}&\approx{}-0.911797757986\overrightarrow{BI_B},\\\overrightarrow{CC^\prime}&\approx{}-1.548367218082\overrightarrow{CI_B}. \end{aligned} \] \[ \begin{alignedat}{4} I_B&{}\approx{}&0.618033988750&{}:{}&-0.618033988750&{}:{}&1.000000000000&. \end{alignedat} \]
2b (121)

Radical circle of the Malfatti circles

Approximately,
\[ \begin{alignedat}{4} I^\prime&{}\approx{}&-0.137667555613&{}:{}&1.943587463614&{}:{}&-0.805919908001&. \end{alignedat} \]
2b (121)

Hiroyasu Kamo