Derousseau's Generalization of the Malfatti circles

\(A=22.5\degree\), \(B=22.5\degree\), \(C=135\degree\).

*
[Other solutions]
[Guy]
[Lob & Richmond]

\(\mathbf{6}\) \((220)\)

Triangle connecting the centers of the Malfatti circles

Approximately,
\[ \begin{alignedat}{4} A^\prime&{}\approx{}&0.382683432365&{}:{}&0.216772751325&{}:{}&0.400543816310&,\\B^\prime&{}\approx{}&0.216772751325&{}:{}&0.382683432365&{}:{}&0.400543816310&,\\C^\prime&{}\approx{}&6.526234467956&{}:{}&6.526234467956&{}:{}&-12.052468935912&. \end{alignedat} \]
6 (220)

Angle bisectors

Approximately,
\[ \begin{aligned} \overrightarrow{AA^\prime}&\approx{}0.834089318960\overrightarrow{AI},\\\overrightarrow{BB^\prime}&\approx{}0.834089318960\overrightarrow{BI},\\\overrightarrow{CC^\prime}&\approx{}25.111377834540\overrightarrow{CI}. \end{aligned} \] \[ \begin{alignedat}{4} I&{}\approx{}&0.259891532474&{}:{}&0.259891532474&{}:{}&0.480216935052&. \end{alignedat} \]
6 (220)

Radical circle of the Malfatti circles

Approximately,
\[ \begin{alignedat}{4} I^\prime&{}\approx{}&0.493661940902&{}:{}&0.493661940902&{}:{}&0.012676118196&. \end{alignedat} \]
6 (220)

Hiroyasu Kamo