Derousseau's Generalization of the Malfatti circles

Angle Bisectors


Jump
[Guy]
[Lob & Richmond]
(0**)
(1**)
(2**)
(3**)

\(\mathbf{1b}\)   \((103)\)

\[\begin{aligned}\overrightarrow{AA^{\prime}} &= \dfrac{1-{\cos\dfrac{A}{2}}+{\sin\dfrac{B}{2}}-{\cos\dfrac{C}{2}}-{\sin\dfrac{A}{2}}+{\cos\dfrac{B}{2}}+{\sin\dfrac{C}{2}}}{2\left(1+{\cos\dfrac{A}{2}}+{\cos\dfrac{B}{2}}+{\sin\dfrac{C}{2}}\right)}\overrightarrow{A{I_B}}\\\overrightarrow{BB^{\prime}} &= \dfrac{1+{\cos\dfrac{A}{2}}-{\sin\dfrac{B}{2}}-{\cos\dfrac{C}{2}}-{\sin\dfrac{A}{2}}+{\cos\dfrac{B}{2}}+{\sin\dfrac{C}{2}}}{2\left(1-{\sin\dfrac{A}{2}}+{\sin\dfrac{B}{2}}+{\sin\dfrac{C}{2}}\right)}\overrightarrow{B{I_B}}\\\overrightarrow{CC^{\prime}} &= \dfrac{1+{\cos\dfrac{A}{2}}+{\sin\dfrac{B}{2}}+{\cos\dfrac{C}{2}}-{\sin\dfrac{A}{2}}+{\cos\dfrac{B}{2}}+{\sin\dfrac{C}{2}}}{2\left(1-{\sin\dfrac{A}{2}}+{\cos\dfrac{B}{2}}-{\cos\dfrac{C}{2}}\right)}\overrightarrow{C{I_B}}\end{aligned}\]

Hiroyasu Kamo