[トップ] [前] [上] [次]
8920000≤a2−a⁢b+b2≤8929999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8920000≤a2−a⁢b+b2≤8920099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8920100≤a2−a⁢b+b2≤8920199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8920200≤a2−a⁢b+b2≤8920299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8920300≤a2−a⁢b+b2≤8920399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8920400≤a2−a⁢b+b2≤8920499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8920500≤a2−a⁢b+b2≤8920599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8920600≤a2−a⁢b+b2≤8920699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8920700≤a2−a⁢b+b2≤8920799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8920800≤a2−a⁢b+b2≤8920899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8920900≤a2−a⁢b+b2≤8920999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8921000≤a2−a⁢b+b2≤8921099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8921100≤a2−a⁢b+b2≤8921199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8921200≤a2−a⁢b+b2≤8921299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8921300≤a2−a⁢b+b2≤8921399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8921400≤a2−a⁢b+b2≤8921499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8921500≤a2−a⁢b+b2≤8921599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8921600≤a2−a⁢b+b2≤8921699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8921700≤a2−a⁢b+b2≤8921799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8921800≤a2−a⁢b+b2≤8921899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8921900≤a2−a⁢b+b2≤8921999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8922000≤a2−a⁢b+b2≤8922099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8922100≤a2−a⁢b+b2≤8922199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8922200≤a2−a⁢b+b2≤8922299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8922300≤a2−a⁢b+b2≤8922399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8922400≤a2−a⁢b+b2≤8922499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8922500≤a2−a⁢b+b2≤8922599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8922600≤a2−a⁢b+b2≤8922699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8922700≤a2−a⁢b+b2≤8922799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8922800≤a2−a⁢b+b2≤8922899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8922900≤a2−a⁢b+b2≤8922999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8923000≤a2−a⁢b+b2≤8923099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8923100≤a2−a⁢b+b2≤8923199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8923200≤a2−a⁢b+b2≤8923299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8923300≤a2−a⁢b+b2≤8923399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8923400≤a2−a⁢b+b2≤8923499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8923500≤a2−a⁢b+b2≤8923599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8923600≤a2−a⁢b+b2≤8923699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8923700≤a2−a⁢b+b2≤8923799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8923800≤a2−a⁢b+b2≤8923899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8923900≤a2−a⁢b+b2≤8923999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8924000≤a2−a⁢b+b2≤8924099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8924100≤a2−a⁢b+b2≤8924199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8924200≤a2−a⁢b+b2≤8924299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8924300≤a2−a⁢b+b2≤8924399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8924400≤a2−a⁢b+b2≤8924499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8924500≤a2−a⁢b+b2≤8924599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8924600≤a2−a⁢b+b2≤8924699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8924700≤a2−a⁢b+b2≤8924799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8924800≤a2−a⁢b+b2≤8924899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8924900≤a2−a⁢b+b2≤8924999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8925000≤a2−a⁢b+b2≤8925099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8925100≤a2−a⁢b+b2≤8925199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8925200≤a2−a⁢b+b2≤8925299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8925300≤a2−a⁢b+b2≤8925399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8925400≤a2−a⁢b+b2≤8925499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8925500≤a2−a⁢b+b2≤8925599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8925600≤a2−a⁢b+b2≤8925699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8925700≤a2−a⁢b+b2≤8925799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8925800≤a2−a⁢b+b2≤8925899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8925900≤a2−a⁢b+b2≤8925999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8926000≤a2−a⁢b+b2≤8926099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8926100≤a2−a⁢b+b2≤8926199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8926200≤a2−a⁢b+b2≤8926299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8926300≤a2−a⁢b+b2≤8926399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8926400≤a2−a⁢b+b2≤8926499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8926500≤a2−a⁢b+b2≤8926599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8926600≤a2−a⁢b+b2≤8926699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8926700≤a2−a⁢b+b2≤8926799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8926800≤a2−a⁢b+b2≤8926899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8926900≤a2−a⁢b+b2≤8926999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8927000≤a2−a⁢b+b2≤8927099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8927100≤a2−a⁢b+b2≤8927199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8927200≤a2−a⁢b+b2≤8927299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8927300≤a2−a⁢b+b2≤8927399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8927400≤a2−a⁢b+b2≤8927499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8927500≤a2−a⁢b+b2≤8927599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8927600≤a2−a⁢b+b2≤8927699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8927700≤a2−a⁢b+b2≤8927799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8927800≤a2−a⁢b+b2≤8927899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8927900≤a2−a⁢b+b2≤8927999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8928000≤a2−a⁢b+b2≤8928099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8928100≤a2−a⁢b+b2≤8928199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8928200≤a2−a⁢b+b2≤8928299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8928300≤a2−a⁢b+b2≤8928399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8928400≤a2−a⁢b+b2≤8928499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8928500≤a2−a⁢b+b2≤8928599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8928600≤a2−a⁢b+b2≤8928699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8928700≤a2−a⁢b+b2≤8928799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8928800≤a2−a⁢b+b2≤8928899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8928900≤a2−a⁢b+b2≤8928999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8929000≤a2−a⁢b+b2≤8929099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8929100≤a2−a⁢b+b2≤8929199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8929200≤a2−a⁢b+b2≤8929299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8929300≤a2−a⁢b+b2≤8929399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8929400≤a2−a⁢b+b2≤8929499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8929500≤a2−a⁢b+b2≤8929599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8929600≤a2−a⁢b+b2≤8929699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8929700≤a2−a⁢b+b2≤8929799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8929800≤a2−a⁢b+b2≤8929899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢8929900≤a2−a⁢b+b2≤8929999 であるアイゼンシュタイン整数 a+b⁢ω の分類
[トップ] [前] [上] [次]