[トップ] [前] [上] [次]
12380000≤a2−a⁢b+b2≤12389999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12380000≤a2−a⁢b+b2≤12380099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12380100≤a2−a⁢b+b2≤12380199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12380200≤a2−a⁢b+b2≤12380299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12380300≤a2−a⁢b+b2≤12380399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12380400≤a2−a⁢b+b2≤12380499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12380500≤a2−a⁢b+b2≤12380599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12380600≤a2−a⁢b+b2≤12380699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12380700≤a2−a⁢b+b2≤12380799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12380800≤a2−a⁢b+b2≤12380899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12380900≤a2−a⁢b+b2≤12380999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12381000≤a2−a⁢b+b2≤12381099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12381100≤a2−a⁢b+b2≤12381199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12381200≤a2−a⁢b+b2≤12381299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12381300≤a2−a⁢b+b2≤12381399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12381400≤a2−a⁢b+b2≤12381499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12381500≤a2−a⁢b+b2≤12381599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12381600≤a2−a⁢b+b2≤12381699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12381700≤a2−a⁢b+b2≤12381799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12381800≤a2−a⁢b+b2≤12381899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12381900≤a2−a⁢b+b2≤12381999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12382000≤a2−a⁢b+b2≤12382099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12382100≤a2−a⁢b+b2≤12382199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12382200≤a2−a⁢b+b2≤12382299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12382300≤a2−a⁢b+b2≤12382399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12382400≤a2−a⁢b+b2≤12382499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12382500≤a2−a⁢b+b2≤12382599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12382600≤a2−a⁢b+b2≤12382699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12382700≤a2−a⁢b+b2≤12382799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12382800≤a2−a⁢b+b2≤12382899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12382900≤a2−a⁢b+b2≤12382999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12383000≤a2−a⁢b+b2≤12383099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12383100≤a2−a⁢b+b2≤12383199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12383200≤a2−a⁢b+b2≤12383299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12383300≤a2−a⁢b+b2≤12383399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12383400≤a2−a⁢b+b2≤12383499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12383500≤a2−a⁢b+b2≤12383599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12383600≤a2−a⁢b+b2≤12383699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12383700≤a2−a⁢b+b2≤12383799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12383800≤a2−a⁢b+b2≤12383899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12383900≤a2−a⁢b+b2≤12383999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12384000≤a2−a⁢b+b2≤12384099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12384100≤a2−a⁢b+b2≤12384199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12384200≤a2−a⁢b+b2≤12384299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12384300≤a2−a⁢b+b2≤12384399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12384400≤a2−a⁢b+b2≤12384499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12384500≤a2−a⁢b+b2≤12384599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12384600≤a2−a⁢b+b2≤12384699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12384700≤a2−a⁢b+b2≤12384799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12384800≤a2−a⁢b+b2≤12384899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12384900≤a2−a⁢b+b2≤12384999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12385000≤a2−a⁢b+b2≤12385099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12385100≤a2−a⁢b+b2≤12385199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12385200≤a2−a⁢b+b2≤12385299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12385300≤a2−a⁢b+b2≤12385399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12385400≤a2−a⁢b+b2≤12385499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12385500≤a2−a⁢b+b2≤12385599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12385600≤a2−a⁢b+b2≤12385699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12385700≤a2−a⁢b+b2≤12385799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12385800≤a2−a⁢b+b2≤12385899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12385900≤a2−a⁢b+b2≤12385999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12386000≤a2−a⁢b+b2≤12386099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12386100≤a2−a⁢b+b2≤12386199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12386200≤a2−a⁢b+b2≤12386299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12386300≤a2−a⁢b+b2≤12386399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12386400≤a2−a⁢b+b2≤12386499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12386500≤a2−a⁢b+b2≤12386599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12386600≤a2−a⁢b+b2≤12386699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12386700≤a2−a⁢b+b2≤12386799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12386800≤a2−a⁢b+b2≤12386899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12386900≤a2−a⁢b+b2≤12386999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12387000≤a2−a⁢b+b2≤12387099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12387100≤a2−a⁢b+b2≤12387199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12387200≤a2−a⁢b+b2≤12387299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12387300≤a2−a⁢b+b2≤12387399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12387400≤a2−a⁢b+b2≤12387499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12387500≤a2−a⁢b+b2≤12387599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12387600≤a2−a⁢b+b2≤12387699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12387700≤a2−a⁢b+b2≤12387799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12387800≤a2−a⁢b+b2≤12387899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12387900≤a2−a⁢b+b2≤12387999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12388000≤a2−a⁢b+b2≤12388099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12388100≤a2−a⁢b+b2≤12388199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12388200≤a2−a⁢b+b2≤12388299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12388300≤a2−a⁢b+b2≤12388399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12388400≤a2−a⁢b+b2≤12388499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12388500≤a2−a⁢b+b2≤12388599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12388600≤a2−a⁢b+b2≤12388699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12388700≤a2−a⁢b+b2≤12388799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12388800≤a2−a⁢b+b2≤12388899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12388900≤a2−a⁢b+b2≤12388999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12389000≤a2−a⁢b+b2≤12389099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12389100≤a2−a⁢b+b2≤12389199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12389200≤a2−a⁢b+b2≤12389299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12389300≤a2−a⁢b+b2≤12389399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12389400≤a2−a⁢b+b2≤12389499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12389500≤a2−a⁢b+b2≤12389599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12389600≤a2−a⁢b+b2≤12389699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12389700≤a2−a⁢b+b2≤12389799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12389800≤a2−a⁢b+b2≤12389899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢12389900≤a2−a⁢b+b2≤12389999 であるアイゼンシュタイン整数 a+b⁢ω の分類
[トップ] [前] [上] [次]