[トップ] [前] [上] [次]
29270000≤a2−a⁢b+b2≤29279999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29270000≤a2−a⁢b+b2≤29270099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29270100≤a2−a⁢b+b2≤29270199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29270200≤a2−a⁢b+b2≤29270299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29270300≤a2−a⁢b+b2≤29270399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29270400≤a2−a⁢b+b2≤29270499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29270500≤a2−a⁢b+b2≤29270599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29270600≤a2−a⁢b+b2≤29270699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29270700≤a2−a⁢b+b2≤29270799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29270800≤a2−a⁢b+b2≤29270899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29270900≤a2−a⁢b+b2≤29270999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29271000≤a2−a⁢b+b2≤29271099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29271100≤a2−a⁢b+b2≤29271199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29271200≤a2−a⁢b+b2≤29271299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29271300≤a2−a⁢b+b2≤29271399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29271400≤a2−a⁢b+b2≤29271499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29271500≤a2−a⁢b+b2≤29271599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29271600≤a2−a⁢b+b2≤29271699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29271700≤a2−a⁢b+b2≤29271799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29271800≤a2−a⁢b+b2≤29271899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29271900≤a2−a⁢b+b2≤29271999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29272000≤a2−a⁢b+b2≤29272099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29272100≤a2−a⁢b+b2≤29272199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29272200≤a2−a⁢b+b2≤29272299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29272300≤a2−a⁢b+b2≤29272399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29272400≤a2−a⁢b+b2≤29272499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29272500≤a2−a⁢b+b2≤29272599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29272600≤a2−a⁢b+b2≤29272699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29272700≤a2−a⁢b+b2≤29272799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29272800≤a2−a⁢b+b2≤29272899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29272900≤a2−a⁢b+b2≤29272999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29273000≤a2−a⁢b+b2≤29273099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29273100≤a2−a⁢b+b2≤29273199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29273200≤a2−a⁢b+b2≤29273299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29273300≤a2−a⁢b+b2≤29273399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29273400≤a2−a⁢b+b2≤29273499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29273500≤a2−a⁢b+b2≤29273599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29273600≤a2−a⁢b+b2≤29273699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29273700≤a2−a⁢b+b2≤29273799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29273800≤a2−a⁢b+b2≤29273899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29273900≤a2−a⁢b+b2≤29273999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29274000≤a2−a⁢b+b2≤29274099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29274100≤a2−a⁢b+b2≤29274199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29274200≤a2−a⁢b+b2≤29274299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29274300≤a2−a⁢b+b2≤29274399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29274400≤a2−a⁢b+b2≤29274499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29274500≤a2−a⁢b+b2≤29274599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29274600≤a2−a⁢b+b2≤29274699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29274700≤a2−a⁢b+b2≤29274799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29274800≤a2−a⁢b+b2≤29274899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29274900≤a2−a⁢b+b2≤29274999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29275000≤a2−a⁢b+b2≤29275099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29275100≤a2−a⁢b+b2≤29275199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29275200≤a2−a⁢b+b2≤29275299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29275300≤a2−a⁢b+b2≤29275399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29275400≤a2−a⁢b+b2≤29275499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29275500≤a2−a⁢b+b2≤29275599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29275600≤a2−a⁢b+b2≤29275699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29275700≤a2−a⁢b+b2≤29275799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29275800≤a2−a⁢b+b2≤29275899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29275900≤a2−a⁢b+b2≤29275999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29276000≤a2−a⁢b+b2≤29276099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29276100≤a2−a⁢b+b2≤29276199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29276200≤a2−a⁢b+b2≤29276299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29276300≤a2−a⁢b+b2≤29276399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29276400≤a2−a⁢b+b2≤29276499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29276500≤a2−a⁢b+b2≤29276599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29276600≤a2−a⁢b+b2≤29276699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29276700≤a2−a⁢b+b2≤29276799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29276800≤a2−a⁢b+b2≤29276899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29276900≤a2−a⁢b+b2≤29276999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29277000≤a2−a⁢b+b2≤29277099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29277100≤a2−a⁢b+b2≤29277199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29277200≤a2−a⁢b+b2≤29277299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29277300≤a2−a⁢b+b2≤29277399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29277400≤a2−a⁢b+b2≤29277499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29277500≤a2−a⁢b+b2≤29277599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29277600≤a2−a⁢b+b2≤29277699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29277700≤a2−a⁢b+b2≤29277799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29277800≤a2−a⁢b+b2≤29277899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29277900≤a2−a⁢b+b2≤29277999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29278000≤a2−a⁢b+b2≤29278099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29278100≤a2−a⁢b+b2≤29278199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29278200≤a2−a⁢b+b2≤29278299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29278300≤a2−a⁢b+b2≤29278399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29278400≤a2−a⁢b+b2≤29278499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29278500≤a2−a⁢b+b2≤29278599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29278600≤a2−a⁢b+b2≤29278699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29278700≤a2−a⁢b+b2≤29278799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29278800≤a2−a⁢b+b2≤29278899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29278900≤a2−a⁢b+b2≤29278999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29279000≤a2−a⁢b+b2≤29279099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29279100≤a2−a⁢b+b2≤29279199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29279200≤a2−a⁢b+b2≤29279299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29279300≤a2−a⁢b+b2≤29279399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29279400≤a2−a⁢b+b2≤29279499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29279500≤a2−a⁢b+b2≤29279599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29279600≤a2−a⁢b+b2≤29279699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29279700≤a2−a⁢b+b2≤29279799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29279800≤a2−a⁢b+b2≤29279899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢29279900≤a2−a⁢b+b2≤29279999 であるアイゼンシュタイン整数 a+b⁢ω の分類
[トップ] [前] [上] [次]