[トップ] [前] [上] [次]
32060000≤a2−a⁢b+b2≤32069999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32060000≤a2−a⁢b+b2≤32060099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32060100≤a2−a⁢b+b2≤32060199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32060200≤a2−a⁢b+b2≤32060299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32060300≤a2−a⁢b+b2≤32060399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32060400≤a2−a⁢b+b2≤32060499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32060500≤a2−a⁢b+b2≤32060599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32060600≤a2−a⁢b+b2≤32060699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32060700≤a2−a⁢b+b2≤32060799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32060800≤a2−a⁢b+b2≤32060899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32060900≤a2−a⁢b+b2≤32060999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32061000≤a2−a⁢b+b2≤32061099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32061100≤a2−a⁢b+b2≤32061199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32061200≤a2−a⁢b+b2≤32061299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32061300≤a2−a⁢b+b2≤32061399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32061400≤a2−a⁢b+b2≤32061499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32061500≤a2−a⁢b+b2≤32061599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32061600≤a2−a⁢b+b2≤32061699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32061700≤a2−a⁢b+b2≤32061799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32061800≤a2−a⁢b+b2≤32061899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32061900≤a2−a⁢b+b2≤32061999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32062000≤a2−a⁢b+b2≤32062099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32062100≤a2−a⁢b+b2≤32062199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32062200≤a2−a⁢b+b2≤32062299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32062300≤a2−a⁢b+b2≤32062399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32062400≤a2−a⁢b+b2≤32062499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32062500≤a2−a⁢b+b2≤32062599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32062600≤a2−a⁢b+b2≤32062699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32062700≤a2−a⁢b+b2≤32062799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32062800≤a2−a⁢b+b2≤32062899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32062900≤a2−a⁢b+b2≤32062999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32063000≤a2−a⁢b+b2≤32063099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32063100≤a2−a⁢b+b2≤32063199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32063200≤a2−a⁢b+b2≤32063299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32063300≤a2−a⁢b+b2≤32063399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32063400≤a2−a⁢b+b2≤32063499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32063500≤a2−a⁢b+b2≤32063599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32063600≤a2−a⁢b+b2≤32063699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32063700≤a2−a⁢b+b2≤32063799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32063800≤a2−a⁢b+b2≤32063899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32063900≤a2−a⁢b+b2≤32063999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32064000≤a2−a⁢b+b2≤32064099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32064100≤a2−a⁢b+b2≤32064199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32064200≤a2−a⁢b+b2≤32064299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32064300≤a2−a⁢b+b2≤32064399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32064400≤a2−a⁢b+b2≤32064499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32064500≤a2−a⁢b+b2≤32064599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32064600≤a2−a⁢b+b2≤32064699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32064700≤a2−a⁢b+b2≤32064799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32064800≤a2−a⁢b+b2≤32064899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32064900≤a2−a⁢b+b2≤32064999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32065000≤a2−a⁢b+b2≤32065099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32065100≤a2−a⁢b+b2≤32065199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32065200≤a2−a⁢b+b2≤32065299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32065300≤a2−a⁢b+b2≤32065399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32065400≤a2−a⁢b+b2≤32065499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32065500≤a2−a⁢b+b2≤32065599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32065600≤a2−a⁢b+b2≤32065699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32065700≤a2−a⁢b+b2≤32065799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32065800≤a2−a⁢b+b2≤32065899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32065900≤a2−a⁢b+b2≤32065999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32066000≤a2−a⁢b+b2≤32066099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32066100≤a2−a⁢b+b2≤32066199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32066200≤a2−a⁢b+b2≤32066299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32066300≤a2−a⁢b+b2≤32066399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32066400≤a2−a⁢b+b2≤32066499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32066500≤a2−a⁢b+b2≤32066599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32066600≤a2−a⁢b+b2≤32066699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32066700≤a2−a⁢b+b2≤32066799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32066800≤a2−a⁢b+b2≤32066899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32066900≤a2−a⁢b+b2≤32066999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32067000≤a2−a⁢b+b2≤32067099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32067100≤a2−a⁢b+b2≤32067199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32067200≤a2−a⁢b+b2≤32067299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32067300≤a2−a⁢b+b2≤32067399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32067400≤a2−a⁢b+b2≤32067499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32067500≤a2−a⁢b+b2≤32067599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32067600≤a2−a⁢b+b2≤32067699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32067700≤a2−a⁢b+b2≤32067799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32067800≤a2−a⁢b+b2≤32067899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32067900≤a2−a⁢b+b2≤32067999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32068000≤a2−a⁢b+b2≤32068099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32068100≤a2−a⁢b+b2≤32068199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32068200≤a2−a⁢b+b2≤32068299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32068300≤a2−a⁢b+b2≤32068399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32068400≤a2−a⁢b+b2≤32068499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32068500≤a2−a⁢b+b2≤32068599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32068600≤a2−a⁢b+b2≤32068699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32068700≤a2−a⁢b+b2≤32068799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32068800≤a2−a⁢b+b2≤32068899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32068900≤a2−a⁢b+b2≤32068999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32069000≤a2−a⁢b+b2≤32069099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32069100≤a2−a⁢b+b2≤32069199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32069200≤a2−a⁢b+b2≤32069299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32069300≤a2−a⁢b+b2≤32069399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32069400≤a2−a⁢b+b2≤32069499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32069500≤a2−a⁢b+b2≤32069599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32069600≤a2−a⁢b+b2≤32069699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32069700≤a2−a⁢b+b2≤32069799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32069800≤a2−a⁢b+b2≤32069899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢32069900≤a2−a⁢b+b2≤32069999 であるアイゼンシュタイン整数 a+b⁢ω の分類
[トップ] [前] [上] [次]