[トップ] [前] [上] [次]
33070000≤a2−a⁢b+b2≤33079999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33070000≤a2−a⁢b+b2≤33070099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33070100≤a2−a⁢b+b2≤33070199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33070200≤a2−a⁢b+b2≤33070299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33070300≤a2−a⁢b+b2≤33070399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33070400≤a2−a⁢b+b2≤33070499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33070500≤a2−a⁢b+b2≤33070599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33070600≤a2−a⁢b+b2≤33070699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33070700≤a2−a⁢b+b2≤33070799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33070800≤a2−a⁢b+b2≤33070899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33070900≤a2−a⁢b+b2≤33070999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33071000≤a2−a⁢b+b2≤33071099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33071100≤a2−a⁢b+b2≤33071199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33071200≤a2−a⁢b+b2≤33071299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33071300≤a2−a⁢b+b2≤33071399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33071400≤a2−a⁢b+b2≤33071499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33071500≤a2−a⁢b+b2≤33071599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33071600≤a2−a⁢b+b2≤33071699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33071700≤a2−a⁢b+b2≤33071799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33071800≤a2−a⁢b+b2≤33071899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33071900≤a2−a⁢b+b2≤33071999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33072000≤a2−a⁢b+b2≤33072099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33072100≤a2−a⁢b+b2≤33072199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33072200≤a2−a⁢b+b2≤33072299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33072300≤a2−a⁢b+b2≤33072399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33072400≤a2−a⁢b+b2≤33072499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33072500≤a2−a⁢b+b2≤33072599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33072600≤a2−a⁢b+b2≤33072699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33072700≤a2−a⁢b+b2≤33072799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33072800≤a2−a⁢b+b2≤33072899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33072900≤a2−a⁢b+b2≤33072999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33073000≤a2−a⁢b+b2≤33073099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33073100≤a2−a⁢b+b2≤33073199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33073200≤a2−a⁢b+b2≤33073299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33073300≤a2−a⁢b+b2≤33073399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33073400≤a2−a⁢b+b2≤33073499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33073500≤a2−a⁢b+b2≤33073599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33073600≤a2−a⁢b+b2≤33073699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33073700≤a2−a⁢b+b2≤33073799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33073800≤a2−a⁢b+b2≤33073899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33073900≤a2−a⁢b+b2≤33073999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33074000≤a2−a⁢b+b2≤33074099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33074100≤a2−a⁢b+b2≤33074199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33074200≤a2−a⁢b+b2≤33074299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33074300≤a2−a⁢b+b2≤33074399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33074400≤a2−a⁢b+b2≤33074499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33074500≤a2−a⁢b+b2≤33074599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33074600≤a2−a⁢b+b2≤33074699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33074700≤a2−a⁢b+b2≤33074799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33074800≤a2−a⁢b+b2≤33074899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33074900≤a2−a⁢b+b2≤33074999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33075000≤a2−a⁢b+b2≤33075099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33075100≤a2−a⁢b+b2≤33075199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33075200≤a2−a⁢b+b2≤33075299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33075300≤a2−a⁢b+b2≤33075399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33075400≤a2−a⁢b+b2≤33075499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33075500≤a2−a⁢b+b2≤33075599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33075600≤a2−a⁢b+b2≤33075699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33075700≤a2−a⁢b+b2≤33075799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33075800≤a2−a⁢b+b2≤33075899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33075900≤a2−a⁢b+b2≤33075999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33076000≤a2−a⁢b+b2≤33076099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33076100≤a2−a⁢b+b2≤33076199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33076200≤a2−a⁢b+b2≤33076299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33076300≤a2−a⁢b+b2≤33076399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33076400≤a2−a⁢b+b2≤33076499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33076500≤a2−a⁢b+b2≤33076599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33076600≤a2−a⁢b+b2≤33076699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33076700≤a2−a⁢b+b2≤33076799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33076800≤a2−a⁢b+b2≤33076899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33076900≤a2−a⁢b+b2≤33076999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33077000≤a2−a⁢b+b2≤33077099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33077100≤a2−a⁢b+b2≤33077199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33077200≤a2−a⁢b+b2≤33077299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33077300≤a2−a⁢b+b2≤33077399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33077400≤a2−a⁢b+b2≤33077499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33077500≤a2−a⁢b+b2≤33077599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33077600≤a2−a⁢b+b2≤33077699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33077700≤a2−a⁢b+b2≤33077799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33077800≤a2−a⁢b+b2≤33077899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33077900≤a2−a⁢b+b2≤33077999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33078000≤a2−a⁢b+b2≤33078099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33078100≤a2−a⁢b+b2≤33078199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33078200≤a2−a⁢b+b2≤33078299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33078300≤a2−a⁢b+b2≤33078399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33078400≤a2−a⁢b+b2≤33078499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33078500≤a2−a⁢b+b2≤33078599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33078600≤a2−a⁢b+b2≤33078699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33078700≤a2−a⁢b+b2≤33078799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33078800≤a2−a⁢b+b2≤33078899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33078900≤a2−a⁢b+b2≤33078999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33079000≤a2−a⁢b+b2≤33079099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33079100≤a2−a⁢b+b2≤33079199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33079200≤a2−a⁢b+b2≤33079299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33079300≤a2−a⁢b+b2≤33079399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33079400≤a2−a⁢b+b2≤33079499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33079500≤a2−a⁢b+b2≤33079599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33079600≤a2−a⁢b+b2≤33079699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33079700≤a2−a⁢b+b2≤33079799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33079800≤a2−a⁢b+b2≤33079899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢33079900≤a2−a⁢b+b2≤33079999 であるアイゼンシュタイン整数 a+b⁢ω の分類
[トップ] [前] [上] [次]