[トップ] [前] [上] [次]
34320000≤a2−a⁢b+b2≤34329999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34320000≤a2−a⁢b+b2≤34320099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34320100≤a2−a⁢b+b2≤34320199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34320200≤a2−a⁢b+b2≤34320299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34320300≤a2−a⁢b+b2≤34320399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34320400≤a2−a⁢b+b2≤34320499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34320500≤a2−a⁢b+b2≤34320599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34320600≤a2−a⁢b+b2≤34320699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34320700≤a2−a⁢b+b2≤34320799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34320800≤a2−a⁢b+b2≤34320899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34320900≤a2−a⁢b+b2≤34320999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34321000≤a2−a⁢b+b2≤34321099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34321100≤a2−a⁢b+b2≤34321199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34321200≤a2−a⁢b+b2≤34321299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34321300≤a2−a⁢b+b2≤34321399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34321400≤a2−a⁢b+b2≤34321499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34321500≤a2−a⁢b+b2≤34321599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34321600≤a2−a⁢b+b2≤34321699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34321700≤a2−a⁢b+b2≤34321799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34321800≤a2−a⁢b+b2≤34321899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34321900≤a2−a⁢b+b2≤34321999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34322000≤a2−a⁢b+b2≤34322099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34322100≤a2−a⁢b+b2≤34322199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34322200≤a2−a⁢b+b2≤34322299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34322300≤a2−a⁢b+b2≤34322399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34322400≤a2−a⁢b+b2≤34322499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34322500≤a2−a⁢b+b2≤34322599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34322600≤a2−a⁢b+b2≤34322699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34322700≤a2−a⁢b+b2≤34322799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34322800≤a2−a⁢b+b2≤34322899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34322900≤a2−a⁢b+b2≤34322999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34323000≤a2−a⁢b+b2≤34323099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34323100≤a2−a⁢b+b2≤34323199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34323200≤a2−a⁢b+b2≤34323299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34323300≤a2−a⁢b+b2≤34323399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34323400≤a2−a⁢b+b2≤34323499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34323500≤a2−a⁢b+b2≤34323599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34323600≤a2−a⁢b+b2≤34323699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34323700≤a2−a⁢b+b2≤34323799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34323800≤a2−a⁢b+b2≤34323899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34323900≤a2−a⁢b+b2≤34323999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34324000≤a2−a⁢b+b2≤34324099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34324100≤a2−a⁢b+b2≤34324199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34324200≤a2−a⁢b+b2≤34324299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34324300≤a2−a⁢b+b2≤34324399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34324400≤a2−a⁢b+b2≤34324499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34324500≤a2−a⁢b+b2≤34324599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34324600≤a2−a⁢b+b2≤34324699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34324700≤a2−a⁢b+b2≤34324799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34324800≤a2−a⁢b+b2≤34324899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34324900≤a2−a⁢b+b2≤34324999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34325000≤a2−a⁢b+b2≤34325099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34325100≤a2−a⁢b+b2≤34325199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34325200≤a2−a⁢b+b2≤34325299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34325300≤a2−a⁢b+b2≤34325399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34325400≤a2−a⁢b+b2≤34325499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34325500≤a2−a⁢b+b2≤34325599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34325600≤a2−a⁢b+b2≤34325699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34325700≤a2−a⁢b+b2≤34325799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34325800≤a2−a⁢b+b2≤34325899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34325900≤a2−a⁢b+b2≤34325999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34326000≤a2−a⁢b+b2≤34326099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34326100≤a2−a⁢b+b2≤34326199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34326200≤a2−a⁢b+b2≤34326299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34326300≤a2−a⁢b+b2≤34326399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34326400≤a2−a⁢b+b2≤34326499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34326500≤a2−a⁢b+b2≤34326599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34326600≤a2−a⁢b+b2≤34326699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34326700≤a2−a⁢b+b2≤34326799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34326800≤a2−a⁢b+b2≤34326899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34326900≤a2−a⁢b+b2≤34326999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34327000≤a2−a⁢b+b2≤34327099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34327100≤a2−a⁢b+b2≤34327199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34327200≤a2−a⁢b+b2≤34327299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34327300≤a2−a⁢b+b2≤34327399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34327400≤a2−a⁢b+b2≤34327499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34327500≤a2−a⁢b+b2≤34327599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34327600≤a2−a⁢b+b2≤34327699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34327700≤a2−a⁢b+b2≤34327799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34327800≤a2−a⁢b+b2≤34327899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34327900≤a2−a⁢b+b2≤34327999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34328000≤a2−a⁢b+b2≤34328099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34328100≤a2−a⁢b+b2≤34328199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34328200≤a2−a⁢b+b2≤34328299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34328300≤a2−a⁢b+b2≤34328399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34328400≤a2−a⁢b+b2≤34328499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34328500≤a2−a⁢b+b2≤34328599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34328600≤a2−a⁢b+b2≤34328699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34328700≤a2−a⁢b+b2≤34328799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34328800≤a2−a⁢b+b2≤34328899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34328900≤a2−a⁢b+b2≤34328999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34329000≤a2−a⁢b+b2≤34329099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34329100≤a2−a⁢b+b2≤34329199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34329200≤a2−a⁢b+b2≤34329299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34329300≤a2−a⁢b+b2≤34329399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34329400≤a2−a⁢b+b2≤34329499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34329500≤a2−a⁢b+b2≤34329599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34329600≤a2−a⁢b+b2≤34329699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34329700≤a2−a⁢b+b2≤34329799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34329800≤a2−a⁢b+b2≤34329899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢34329900≤a2−a⁢b+b2≤34329999 であるアイゼンシュタイン整数 a+b⁢ω の分類
[トップ] [前] [上] [次]