[トップ] [前] [上] [次]
36730000≤a2−a⁢b+b2≤36739999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36730000≤a2−a⁢b+b2≤36730099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36730100≤a2−a⁢b+b2≤36730199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36730200≤a2−a⁢b+b2≤36730299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36730300≤a2−a⁢b+b2≤36730399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36730400≤a2−a⁢b+b2≤36730499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36730500≤a2−a⁢b+b2≤36730599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36730600≤a2−a⁢b+b2≤36730699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36730700≤a2−a⁢b+b2≤36730799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36730800≤a2−a⁢b+b2≤36730899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36730900≤a2−a⁢b+b2≤36730999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36731000≤a2−a⁢b+b2≤36731099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36731100≤a2−a⁢b+b2≤36731199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36731200≤a2−a⁢b+b2≤36731299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36731300≤a2−a⁢b+b2≤36731399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36731400≤a2−a⁢b+b2≤36731499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36731500≤a2−a⁢b+b2≤36731599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36731600≤a2−a⁢b+b2≤36731699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36731700≤a2−a⁢b+b2≤36731799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36731800≤a2−a⁢b+b2≤36731899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36731900≤a2−a⁢b+b2≤36731999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36732000≤a2−a⁢b+b2≤36732099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36732100≤a2−a⁢b+b2≤36732199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36732200≤a2−a⁢b+b2≤36732299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36732300≤a2−a⁢b+b2≤36732399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36732400≤a2−a⁢b+b2≤36732499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36732500≤a2−a⁢b+b2≤36732599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36732600≤a2−a⁢b+b2≤36732699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36732700≤a2−a⁢b+b2≤36732799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36732800≤a2−a⁢b+b2≤36732899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36732900≤a2−a⁢b+b2≤36732999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36733000≤a2−a⁢b+b2≤36733099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36733100≤a2−a⁢b+b2≤36733199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36733200≤a2−a⁢b+b2≤36733299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36733300≤a2−a⁢b+b2≤36733399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36733400≤a2−a⁢b+b2≤36733499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36733500≤a2−a⁢b+b2≤36733599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36733600≤a2−a⁢b+b2≤36733699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36733700≤a2−a⁢b+b2≤36733799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36733800≤a2−a⁢b+b2≤36733899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36733900≤a2−a⁢b+b2≤36733999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36734000≤a2−a⁢b+b2≤36734099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36734100≤a2−a⁢b+b2≤36734199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36734200≤a2−a⁢b+b2≤36734299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36734300≤a2−a⁢b+b2≤36734399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36734400≤a2−a⁢b+b2≤36734499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36734500≤a2−a⁢b+b2≤36734599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36734600≤a2−a⁢b+b2≤36734699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36734700≤a2−a⁢b+b2≤36734799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36734800≤a2−a⁢b+b2≤36734899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36734900≤a2−a⁢b+b2≤36734999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36735000≤a2−a⁢b+b2≤36735099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36735100≤a2−a⁢b+b2≤36735199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36735200≤a2−a⁢b+b2≤36735299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36735300≤a2−a⁢b+b2≤36735399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36735400≤a2−a⁢b+b2≤36735499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36735500≤a2−a⁢b+b2≤36735599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36735600≤a2−a⁢b+b2≤36735699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36735700≤a2−a⁢b+b2≤36735799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36735800≤a2−a⁢b+b2≤36735899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36735900≤a2−a⁢b+b2≤36735999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36736000≤a2−a⁢b+b2≤36736099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36736100≤a2−a⁢b+b2≤36736199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36736200≤a2−a⁢b+b2≤36736299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36736300≤a2−a⁢b+b2≤36736399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36736400≤a2−a⁢b+b2≤36736499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36736500≤a2−a⁢b+b2≤36736599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36736600≤a2−a⁢b+b2≤36736699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36736700≤a2−a⁢b+b2≤36736799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36736800≤a2−a⁢b+b2≤36736899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36736900≤a2−a⁢b+b2≤36736999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36737000≤a2−a⁢b+b2≤36737099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36737100≤a2−a⁢b+b2≤36737199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36737200≤a2−a⁢b+b2≤36737299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36737300≤a2−a⁢b+b2≤36737399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36737400≤a2−a⁢b+b2≤36737499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36737500≤a2−a⁢b+b2≤36737599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36737600≤a2−a⁢b+b2≤36737699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36737700≤a2−a⁢b+b2≤36737799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36737800≤a2−a⁢b+b2≤36737899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36737900≤a2−a⁢b+b2≤36737999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36738000≤a2−a⁢b+b2≤36738099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36738100≤a2−a⁢b+b2≤36738199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36738200≤a2−a⁢b+b2≤36738299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36738300≤a2−a⁢b+b2≤36738399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36738400≤a2−a⁢b+b2≤36738499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36738500≤a2−a⁢b+b2≤36738599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36738600≤a2−a⁢b+b2≤36738699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36738700≤a2−a⁢b+b2≤36738799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36738800≤a2−a⁢b+b2≤36738899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36738900≤a2−a⁢b+b2≤36738999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36739000≤a2−a⁢b+b2≤36739099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36739100≤a2−a⁢b+b2≤36739199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36739200≤a2−a⁢b+b2≤36739299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36739300≤a2−a⁢b+b2≤36739399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36739400≤a2−a⁢b+b2≤36739499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36739500≤a2−a⁢b+b2≤36739599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36739600≤a2−a⁢b+b2≤36739699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36739700≤a2−a⁢b+b2≤36739799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36739800≤a2−a⁢b+b2≤36739899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢36739900≤a2−a⁢b+b2≤36739999 であるアイゼンシュタイン整数 a+b⁢ω の分類
[トップ] [前] [上] [次]