[トップ] [前] [上] [次]
61430000≤a2−a⁢b+b2≤61439999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61430000≤a2−a⁢b+b2≤61430099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61430100≤a2−a⁢b+b2≤61430199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61430200≤a2−a⁢b+b2≤61430299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61430300≤a2−a⁢b+b2≤61430399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61430400≤a2−a⁢b+b2≤61430499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61430500≤a2−a⁢b+b2≤61430599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61430600≤a2−a⁢b+b2≤61430699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61430700≤a2−a⁢b+b2≤61430799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61430800≤a2−a⁢b+b2≤61430899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61430900≤a2−a⁢b+b2≤61430999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61431000≤a2−a⁢b+b2≤61431099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61431100≤a2−a⁢b+b2≤61431199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61431200≤a2−a⁢b+b2≤61431299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61431300≤a2−a⁢b+b2≤61431399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61431400≤a2−a⁢b+b2≤61431499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61431500≤a2−a⁢b+b2≤61431599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61431600≤a2−a⁢b+b2≤61431699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61431700≤a2−a⁢b+b2≤61431799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61431800≤a2−a⁢b+b2≤61431899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61431900≤a2−a⁢b+b2≤61431999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61432000≤a2−a⁢b+b2≤61432099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61432100≤a2−a⁢b+b2≤61432199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61432200≤a2−a⁢b+b2≤61432299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61432300≤a2−a⁢b+b2≤61432399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61432400≤a2−a⁢b+b2≤61432499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61432500≤a2−a⁢b+b2≤61432599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61432600≤a2−a⁢b+b2≤61432699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61432700≤a2−a⁢b+b2≤61432799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61432800≤a2−a⁢b+b2≤61432899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61432900≤a2−a⁢b+b2≤61432999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61433000≤a2−a⁢b+b2≤61433099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61433100≤a2−a⁢b+b2≤61433199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61433200≤a2−a⁢b+b2≤61433299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61433300≤a2−a⁢b+b2≤61433399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61433400≤a2−a⁢b+b2≤61433499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61433500≤a2−a⁢b+b2≤61433599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61433600≤a2−a⁢b+b2≤61433699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61433700≤a2−a⁢b+b2≤61433799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61433800≤a2−a⁢b+b2≤61433899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61433900≤a2−a⁢b+b2≤61433999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61434000≤a2−a⁢b+b2≤61434099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61434100≤a2−a⁢b+b2≤61434199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61434200≤a2−a⁢b+b2≤61434299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61434300≤a2−a⁢b+b2≤61434399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61434400≤a2−a⁢b+b2≤61434499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61434500≤a2−a⁢b+b2≤61434599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61434600≤a2−a⁢b+b2≤61434699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61434700≤a2−a⁢b+b2≤61434799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61434800≤a2−a⁢b+b2≤61434899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61434900≤a2−a⁢b+b2≤61434999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61435000≤a2−a⁢b+b2≤61435099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61435100≤a2−a⁢b+b2≤61435199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61435200≤a2−a⁢b+b2≤61435299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61435300≤a2−a⁢b+b2≤61435399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61435400≤a2−a⁢b+b2≤61435499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61435500≤a2−a⁢b+b2≤61435599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61435600≤a2−a⁢b+b2≤61435699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61435700≤a2−a⁢b+b2≤61435799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61435800≤a2−a⁢b+b2≤61435899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61435900≤a2−a⁢b+b2≤61435999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61436000≤a2−a⁢b+b2≤61436099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61436100≤a2−a⁢b+b2≤61436199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61436200≤a2−a⁢b+b2≤61436299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61436300≤a2−a⁢b+b2≤61436399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61436400≤a2−a⁢b+b2≤61436499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61436500≤a2−a⁢b+b2≤61436599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61436600≤a2−a⁢b+b2≤61436699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61436700≤a2−a⁢b+b2≤61436799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61436800≤a2−a⁢b+b2≤61436899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61436900≤a2−a⁢b+b2≤61436999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61437000≤a2−a⁢b+b2≤61437099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61437100≤a2−a⁢b+b2≤61437199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61437200≤a2−a⁢b+b2≤61437299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61437300≤a2−a⁢b+b2≤61437399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61437400≤a2−a⁢b+b2≤61437499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61437500≤a2−a⁢b+b2≤61437599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61437600≤a2−a⁢b+b2≤61437699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61437700≤a2−a⁢b+b2≤61437799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61437800≤a2−a⁢b+b2≤61437899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61437900≤a2−a⁢b+b2≤61437999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61438000≤a2−a⁢b+b2≤61438099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61438100≤a2−a⁢b+b2≤61438199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61438200≤a2−a⁢b+b2≤61438299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61438300≤a2−a⁢b+b2≤61438399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61438400≤a2−a⁢b+b2≤61438499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61438500≤a2−a⁢b+b2≤61438599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61438600≤a2−a⁢b+b2≤61438699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61438700≤a2−a⁢b+b2≤61438799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61438800≤a2−a⁢b+b2≤61438899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61438900≤a2−a⁢b+b2≤61438999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61439000≤a2−a⁢b+b2≤61439099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61439100≤a2−a⁢b+b2≤61439199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61439200≤a2−a⁢b+b2≤61439299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61439300≤a2−a⁢b+b2≤61439399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61439400≤a2−a⁢b+b2≤61439499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61439500≤a2−a⁢b+b2≤61439599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61439600≤a2−a⁢b+b2≤61439699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61439700≤a2−a⁢b+b2≤61439799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61439800≤a2−a⁢b+b2≤61439899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢61439900≤a2−a⁢b+b2≤61439999 であるアイゼンシュタイン整数 a+b⁢ω の分類
[トップ] [前] [上] [次]