[トップ] [前] [上] [次]
64400000≤a2−a⁢b+b2≤64409999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64400000≤a2−a⁢b+b2≤64400099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64400100≤a2−a⁢b+b2≤64400199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64400200≤a2−a⁢b+b2≤64400299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64400300≤a2−a⁢b+b2≤64400399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64400400≤a2−a⁢b+b2≤64400499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64400500≤a2−a⁢b+b2≤64400599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64400600≤a2−a⁢b+b2≤64400699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64400700≤a2−a⁢b+b2≤64400799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64400800≤a2−a⁢b+b2≤64400899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64400900≤a2−a⁢b+b2≤64400999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64401000≤a2−a⁢b+b2≤64401099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64401100≤a2−a⁢b+b2≤64401199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64401200≤a2−a⁢b+b2≤64401299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64401300≤a2−a⁢b+b2≤64401399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64401400≤a2−a⁢b+b2≤64401499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64401500≤a2−a⁢b+b2≤64401599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64401600≤a2−a⁢b+b2≤64401699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64401700≤a2−a⁢b+b2≤64401799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64401800≤a2−a⁢b+b2≤64401899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64401900≤a2−a⁢b+b2≤64401999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64402000≤a2−a⁢b+b2≤64402099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64402100≤a2−a⁢b+b2≤64402199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64402200≤a2−a⁢b+b2≤64402299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64402300≤a2−a⁢b+b2≤64402399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64402400≤a2−a⁢b+b2≤64402499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64402500≤a2−a⁢b+b2≤64402599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64402600≤a2−a⁢b+b2≤64402699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64402700≤a2−a⁢b+b2≤64402799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64402800≤a2−a⁢b+b2≤64402899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64402900≤a2−a⁢b+b2≤64402999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64403000≤a2−a⁢b+b2≤64403099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64403100≤a2−a⁢b+b2≤64403199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64403200≤a2−a⁢b+b2≤64403299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64403300≤a2−a⁢b+b2≤64403399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64403400≤a2−a⁢b+b2≤64403499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64403500≤a2−a⁢b+b2≤64403599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64403600≤a2−a⁢b+b2≤64403699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64403700≤a2−a⁢b+b2≤64403799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64403800≤a2−a⁢b+b2≤64403899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64403900≤a2−a⁢b+b2≤64403999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64404000≤a2−a⁢b+b2≤64404099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64404100≤a2−a⁢b+b2≤64404199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64404200≤a2−a⁢b+b2≤64404299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64404300≤a2−a⁢b+b2≤64404399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64404400≤a2−a⁢b+b2≤64404499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64404500≤a2−a⁢b+b2≤64404599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64404600≤a2−a⁢b+b2≤64404699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64404700≤a2−a⁢b+b2≤64404799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64404800≤a2−a⁢b+b2≤64404899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64404900≤a2−a⁢b+b2≤64404999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64405000≤a2−a⁢b+b2≤64405099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64405100≤a2−a⁢b+b2≤64405199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64405200≤a2−a⁢b+b2≤64405299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64405300≤a2−a⁢b+b2≤64405399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64405400≤a2−a⁢b+b2≤64405499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64405500≤a2−a⁢b+b2≤64405599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64405600≤a2−a⁢b+b2≤64405699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64405700≤a2−a⁢b+b2≤64405799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64405800≤a2−a⁢b+b2≤64405899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64405900≤a2−a⁢b+b2≤64405999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64406000≤a2−a⁢b+b2≤64406099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64406100≤a2−a⁢b+b2≤64406199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64406200≤a2−a⁢b+b2≤64406299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64406300≤a2−a⁢b+b2≤64406399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64406400≤a2−a⁢b+b2≤64406499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64406500≤a2−a⁢b+b2≤64406599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64406600≤a2−a⁢b+b2≤64406699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64406700≤a2−a⁢b+b2≤64406799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64406800≤a2−a⁢b+b2≤64406899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64406900≤a2−a⁢b+b2≤64406999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64407000≤a2−a⁢b+b2≤64407099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64407100≤a2−a⁢b+b2≤64407199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64407200≤a2−a⁢b+b2≤64407299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64407300≤a2−a⁢b+b2≤64407399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64407400≤a2−a⁢b+b2≤64407499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64407500≤a2−a⁢b+b2≤64407599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64407600≤a2−a⁢b+b2≤64407699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64407700≤a2−a⁢b+b2≤64407799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64407800≤a2−a⁢b+b2≤64407899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64407900≤a2−a⁢b+b2≤64407999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64408000≤a2−a⁢b+b2≤64408099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64408100≤a2−a⁢b+b2≤64408199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64408200≤a2−a⁢b+b2≤64408299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64408300≤a2−a⁢b+b2≤64408399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64408400≤a2−a⁢b+b2≤64408499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64408500≤a2−a⁢b+b2≤64408599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64408600≤a2−a⁢b+b2≤64408699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64408700≤a2−a⁢b+b2≤64408799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64408800≤a2−a⁢b+b2≤64408899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64408900≤a2−a⁢b+b2≤64408999 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64409000≤a2−a⁢b+b2≤64409099 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64409100≤a2−a⁢b+b2≤64409199 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64409200≤a2−a⁢b+b2≤64409299 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64409300≤a2−a⁢b+b2≤64409399 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64409400≤a2−a⁢b+b2≤64409499 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64409500≤a2−a⁢b+b2≤64409599 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64409600≤a2−a⁢b+b2≤64409699 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64409700≤a2−a⁢b+b2≤64409799 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64409800≤a2−a⁢b+b2≤64409899 であるアイゼンシュタイン整数 a+b⁢ω の分類
⬢64409900≤a2−a⁢b+b2≤64409999 であるアイゼンシュタイン整数 a+b⁢ω の分類
[トップ] [前] [上] [次]